每日导数7

发布时间 2023-12-14 19:09:49作者: 会飞的鱼13

多变量问题转化成单变量问题
\(a\in \mathbb{R}\),函数\(f(x)=x^2e^{1-x}-a(x-1)\)

\((1)\)\(a=1\)时,求\(f(x)\)\(\left(\dfrac{3}{4},2\right)\)内的极值

\((2)\)设函数\(g(x)=f(x)+a(x-1-e^{1-x})\),当\(g(x)\)有两个极值点\(x_1,x_2(x_1<x_2)\)时,总有\(x_2g(x_1)\leq \lambda f^{\prime}(x_1)\),求实数\(\lambda\)的值.

\((1)\) \(a=1,f(x)=x^2e^{1-x}-x+1\)

\(f^{\prime}(x)=2xe^{1-x}-x^2e^{1-x}-1=e^{1-x}(2x-x^2)-1\)

\(f^{\prime\prime}(x)=e^{1-x}(2-2x-2x+x^2)=e^{1-x}(x^2-4x+2)\)

\(x^2-4x+2\)\(\left(\dfrac{3}{4},2\right)\)单调递减

从而\(x^2-4x+2<0\) 进而\(f^{\prime}(x)单调递减\)

不难发现\(f^{\prime}(1)=0\)

从而\(x=1\)是极大值点.

\((2)\) \(g(x)=x^2e^{1-x}-a(x-1)+a(x-1-e^{1-x})=x^2e^{1-x}-ae^{1-x}=e^{1-x}(x^2-a)\)

\(g^{\prime}(x)=e^{1-x}(-x^2+2x+a),f^{\prime}(x)=e^{1-x}(2x-x^2)-a\)

\(g(x)\)有两个极值点则\(x_1+x_2=2,x_1x_2=-a\)

\(x_2g(x_1)=x_2e^{1-x_1}(x_1^2-a),f^{\prime}(x_1)=e^{1-x_1}(2x_1-x_1^2)-a\)

则原不等式为

\[x_2e^{1-x_1}(x_1^2-a)\leq \lambda \left(e^{1-x_1}(2x_1-x_1^2)-a\right) \]

\(x_1+x_2=2,x_1x_2=-a\)从而\(x_2=2-x_1,a=(x_1-2)x_1\)代回不等式有

\[(2-x_1)e^{1-x_1}(x_1^2-x_1^2+2x_1)\leq\lambda \left[e^{1-x_1}(2x_1-x_1^2)-x_1^2+2x_1\right] \]

\[2x_1(2-x_1)e^{1-x_1}\leq \lambda(2x_1-x_1^2)( e^{1-x_1}+1) \]

\(x_1\in(0,1)\)

\[2e^{1-x_1}\leq \lambda\left(e^{1-x_1}+1\right) \]

\[\lambda\geq\dfrac{2e^{1-x_1}}{e^{1-x_1}+1}=2\left(1-\dfrac{1}{e^{1-x}+1}\right)_{\max}=\dfrac{2e}{e+1} \]

\(x_1\in(-\infty,0)\)时,

\[\lambda\leq 2\left(1-\dfrac{1}{e^{1-x}+1}\right)_{\min}=\dfrac{2e}{e+1} \]

综上\(\lambda=\dfrac{2e}{e+1}\)