policy on-policy learning速度

Predicting gene expression from histone modifications with self-attention based neural networks and transfer learning

Predicting gene expression from histone modifications with self-attention based neural networks and transfer learning Yuchi Chen 1, Minzhu Xie 1, Jie ......

【scikit-learn基础】--『数据加载』之样本生成器

除了内置的数据集,scikit-learn还提供了随机样本的生成器。通过这些生成器函数,可以生成具有特定特性和分布的随机数据集,以帮助进行机器学习算法的研究、测试和比较。 目前,scikit-learn库(v1.3.0版)中有20个不同的生成样本的函数。本篇重点介绍其中几个具有代表性的函数。 1. ......
生成器 样本 scikit-learn 基础 数据

DeepWalk Online Learning of Social Representations

目录概符号说明DeepWalk代码 Perozzi B., AI-Rfou R. and Skiena S. DeepWalk: Online learning of social representations. KDD, 2014. 概 经典的 graph embedding 学习方法. 符号说 ......

The second day learning summary

1.什么是接口测试? 接口测试是测试系统组件间接口的一种测试。接口测试主要用于外部系统与系统之间以及内部各个子系统之间的交互点,定义特定的交互点,然后通过这些交互点来,通过一些特殊的规则也就是协议,来进行数据之间的交互。测试的重点是要检查数据的交换,传递和控制管理过程,以及系统间的相互逻辑依赖关系等 ......
learning summary second The day

Class-Incremental Learning with Generative Classifiers(CVPR2021W)

前置知识:VAE(可以参考https://zhuanlan.zhihu.com/p/348498294) Motivation 之前的方法通常使用判别式分类器,对条件分布\(p(y|\textbf{x})\)进行建模(classifier+softmax+ce)。其问题在于分类器会偏向最新学的类别, ......

004如何提高mvn的构建速度

一、mvn clean package -T 1C中的-T 1C是什么意思 "-T"参数用于指定构建的线程数,而"1C"表示每个CPU核心使用一个线程。这意味着Maven将根据你的计算机的CPU核心数来确定并行构建的线程数。例如,如果你的计算机有4个CPU核心,那么使用"-T 1C"将启动4个并行线 ......
速度 004 mvn

cerbos golang 内部policy check 处理简单说明

主要是想尝试实现一个rust 的check 方法,所以先研究下golang 的内部实现 CheckResources func (cs *CerbosService) CheckResources(ctx context.Context, req *requestv1.CheckResourcesR ......
cerbos golang policy check

【scikit-learn基础】--『数据加载』之真实数据集

上一篇介绍了scikit-learn中的几个玩具数据集,本篇介绍scikit-learn提供的一些真实的数据集。玩具数据集:scikit-learn 基础(01)--『数据加载』之玩具数据集 1. 获取数据集 与玩具数据集不同,真实的数据集的数据不仅数据特征多,而且数据量也比较大,所以没有直接包含在 ......
数据 scikit-learn 基础 scikit learn

路由器速度慢、信号弱 中国电信科普:关掉Wi-Fi双频合一

今天中国电信官微科普道:速度慢、信号弱,Wi-Fi老断开?可能是路由器的“Wi-Fi双频合一”没有关,并建议大家关掉。 中国电信科普道,路由器有2.4GHz和5GHz两个频段,前者网速慢,但穿墙能力强,后者恰好相反。 “双合一”就是将2.4GHz与5GHz的Wi-Fi信号合并为一个网络名称 (SSI ......
双频 路由 路由器 科普 合一

老电脑组raid 0心得记录及速度测试

华硕m5a97 2.0 evo 是amd 970芯片组,大概是2011年的产物,两块新买的同品牌500g带缓存固态硬盘组raid 0,在bios里操作后,组成陈列名称自定义为111,diskgenius软件显示为一块硬盘,名称为AMD 2+0 stripe RAID01.10,组raid0在我的理解 ......
速度 心得 电脑 raid

Online Learning

Online Learning 1.网上学习比较普遍 2. 产生这种现象的原因 3. 这种现象可能带来的影响 参考范文: Online Learning Perhaps there is something you don't know how to doTTn the past, you migh ......
Learning Online

2023ICCV_FSI Frequency and Spatial Interactive Learning for Image Restoration in Under-Display Cameras

三. Network 1. 2. FLB: 没看懂是怎么分离的水平和竖直方向 3. SLB:每一层保留一半的通道特征用于细化,其余的在特征重构后输出(没看懂)。 Multi-distillation Network 超分辨网络的Multi-distillation Network(2019ACMMM ......

[论文速览] Randomized Quantization@ A Generic Augmentation for Data Agnostic Self-supervised Learning

Pre title: Randomized Quantization: A Generic Augmentation for Data Agnostic Self-supervised Learning accepted: ICCV 2023 paper: https://arxiv.org/abs ......

【scikit-learn基础】--『数据加载』之玩具数据集

机器学习的第一步是准备数据,好的数据能帮助我们加深对机器学习算法的理解。 不管是在学习还是实际工作中,准备数据永远是一个枯燥乏味的步骤。scikit-learn库显然看到了这个痛点,才在它的数据加载子模块中为我们准备了直接可用的数据集。 在它的数据加载子模块中,提供了6种直接可用来学习算法的经典数据 ......
数据 scikit-learn 玩具 基础 scikit

The importance of learning basic skills

参考范文1 The Importance of Reading Literature Literature is acknowledged as the most precious product of human civilization and wisdom, especially by our ......
importance learning skills basic The

Generative-Contrastive Graph Learning for Recommendation论文阅读笔记

Abstract 首先介绍了一下GCL的一些缺点,GCL是通过数据增强来构造对比视图,然后通过最大化对比视图之间的互信息来提供自监督信号。但是目前的数据增强技术都有着一定的缺点 结构增强随机退出节点或边,容易破坏用户项目的内在本质 特征增强对每个节点施加相同的尺度噪声增强,忽略的节点的独特特征 所以 ......

Java Learning Day4 面向对象基础

初始化顺序:默认初始化 显示初始化 构造器初始化(单参先执行) 有内部类加载的话,在显式赋值之后,就进行新的加载 Static 静态变量:静态成员变量属于类的,完全不需要创建对象使用。 private:同类中 缺省:同一包中 protected:不同包子类 public:不同包 只有成员变量可以用权 ......
Learning 对象 基础 Java Day4

克莱·汤普森的合同, 你再也不是那个hero. learning area 和 performance area

从23年6月就开始了拉锯谈判,要价格5年2.3亿,4年2亿,到4年1.6亿,勇士一直报价4年1亿到1.2亿,到了11月底的第七次谈判,勇士只报价4年5500万。结合了克莱在23-24新赛季的表现,这价格可以说是没有溢价了,这合同谈判有些期权的影子,合同是买未来的performance,时间价值的溢价 ......
area performance learning 合同 hero

Spring Boot 3.2.0 试用CRaC,启动速度提升3到10倍

CRaC(Coordinated Restore at Checkpoint)。 CRaC 是 OpenJDK 项目,能够把运行中的 JVM,将其状态(包括您的应用程序)存储到磁盘中。然后,在另一个时间点,您可以从保存的检查点将 JVM 恢复到内存中。通过这种方式,可以启动一个应用程序,预热它,并创 ......
速度 Spring Boot CRaC

【scikit-learn基础】--概述

Scikit-learn是一个基于Python的开源机器学习库,它提供了大量的机器学习算法和工具,方便用户进行数据挖掘、分析和预测。 Scikit-learn是基于另外两个知名的库 Scipy 和 Numpy的,关于 Scipy 和 Numpy 等库,之前的系列文章中有介绍: Scipy 基础系列 ......
scikit-learn 基础 scikit learn

哈啰一面:如何优化大表的查询速度?

哈啰出行作为阿里系共享单车的头部企业,在江湖中的知名度还是有的,而今天我们就来看一道哈啰 Java 一面中的经典面试题:当数据表中数据量过大时,应该如何优化查询速度? 哈啰出行的面试题目如下: 其他面试题相对来说比较简单,大部人题目都可以在我的网站上(www.javacn.site)找到答案,这里就 ......
一面 速度

Java Learning Day3 数组

System.out.print; System.out.println;每输出一次就会换行 Integer.parseInt 字符串转int Double.parseDouble 字符串转double 数组 存储结构连续,存储元素类型相同,随机访问 JVM JVM栈:JVM栈正是java中方法执行 ......
数组 Learning Java Day3 Day

前端优化之路:构建、打包速度提升

【前言】 《闻香识女人》中有句经典台词,“有些人一分钟过尽一生”,多少人在等待中浪费了生命的美好。同样,如果一个项目构建、热更新、打包速度过慢,中途需大把时间去等待,那么不免让人抓狂。 【效果展示】 优化前,构建速度 整整126秒,两分多钟过去后,项目才启动成功 优化后,构建速度 21秒运行完毕,仅 ......
前端 速度

TensorFlow-深度学习预训练模型的使用方法讲解(TensorFlow-Explanation on how to use deep learning pre-trained models)

在运用深度学习模型时,掌握运用预训练模型的方法是必不可少的一步。为什么要使用与训练的模型,原因归纳如下: (1)使用大量高质量的数据(如 ImageNet 是普林斯顿大学与斯坦福大学所主导的项目)又加上设计较复杂的模型结构(如ResNet模型高达150层)设计出来的模型,准确率会大大提高。 (2)可 ......

Learn DevOps:Start DevOps with Docker(三)

一、Docker与Microservices 很多人都在谈论microservices的优势,但是它不是免费的,面临着许多挑战,Docker在解决这些挑战方面发挥至关重要的作用。在微服务体系结构中,我们将构建许多微小的服务,而不是构建一个大的整体,这些微服务中的每一个都可以用不同的技术来构建。由于这 ......
DevOps Docker Learn Start with

Learn DevOps: Start devOps with Docker(二)

一、Docker image commands docker images 查看本地计算机中所有存在的image docker pull mysql 可以看到如果我们不提供标记,它会使用默认的最新的标记,它会查看是否有标记为latest的mysql映像,并将其汇集下来。pull只会拉取image使其 ......
DevOps Docker devOps Learn Start

论文:Predicting Optical Water Quality Indicators from Remote Sensing Using Machine Learning Algorithms in Tropical Highlands of Ethiopia

水刊,中科院都没有收录。不属于sci。 吃一堑长一智,以后先看属于哪个期刊的。总是忘记。 期刊:Hydrology 浪费时间,啥也没有,没有创新点,就一点点的对比工作量。 “Predicting Optical Water Quality Indicators from Remote Sensing ......

CA-TCC: 半监督时间序列分类的自监督对比表征学习《Self-supervised Contrastive Representation Learning for Semi-supervised Time-Series Classification》(时间序列、时序表征、时间和上下文对比、对比学习、自监督学习、半监督学习、TS-TCC的扩展版)

现在是2023年11月27日,10:48,今天把这篇论文看了。 论文:Self-supervised Contrastive Representation Learning for Semi-supervised Time-Series Classification GitHub:https://g ......
时间序列 时间 序列 supervised 时序

The Hello World of Deep Learning with Neural Networks

The Hello World of Deep Learning with Neural Networks dlaicourse/Course 1 - Part 2 - Lesson 2 - Notebook.ipynb at master · lmoroney/dlaicourse (github ......
Learning Networks Neural Hello World

The Hello World of Deep Learning with Neural Networks

The Hello World of Deep Learning with Neural Networks dlaicourse/Course 1 - Part 2 - Lesson 2 - Notebook.ipynb at master · lmoroney/dlaicourse (github ......
Learning Networks Neural Hello World