题解 序列p2023 2009

AT_joisc2015_e 题解

AT_joisc2015_e 传送门 更好的阅读体验 题意 给定长为 \(n-1\) 的数组 \(b_i\),要求有多少长为 \(n\) 的数组 \(a_i\) 满足: \(b\) 数组可以由 \(a\) 数组删掉一个数得到。 存在一个排列 \(p\) 满足 \(a_i\) 是以 \(p_i\) 结 ......
题解 AT_joisc joisc 2015 AT

NX2306机电概念设计-仿真序列

【写在每个笔记前面:个人学习记录,如有错误,烦请指正,不胜感激。】 【机电概念设计】→【自动化】→【仿真序列】 1、定义 仿真序列就是让你在什么时间,实现什么运动。 官方解释:定义基于时间的行为和基于事件的行为 2、基于时间的仿真序列 (学习案例源于 UG爱好者-撒盐哥) step1:设置前准备 a ......
概念设计 序列 概念 2306 NX

P8868 [NOIP2022] 比赛 题解

Description 小 N 和小 O 会在 2022 年 11 月参加一场盛大的程序设计大赛 NOIP!小 P 会作为裁判主持竞赛。小 N 和小 O 各自率领了一支 \(n\) 个人的队伍,选手在每支队伍内都是从 \(1\) 到 \(n\) 编号。每一个选手都有相应的程序设计水平。具体的,小 N ......
题解 P8868 8868 2022 NOIP

[记]在rust中使用xml,xml的序列化与反序列化

序 在rust中有好几个xml库,但我个人比较推荐的是quick_xml库,这个库的序列化和反序列化使用体验比较好。 启用quick_xml的feature quick-xml = { version = "0.31.0",features=["serde","serialize"] } serde ......
序列 xml rust

IM通讯协议专题学习(十):初识 Thrift 序列化协议

本文将带你一起初步认识Thrift的序列化协议,包括Binary协议、Compact协议(类似于Protobuf)、JSON协议,希望能为你的通信协议格式选型带来参考。 ......
序列 通讯 专题 Thrift

《计算生物学导论 : 图谱、序列和基因组》是2009年8月科学出版社出版的图书,作者是(美)Michael S. Waterman。 [1]

本书介绍分子生物学的基本常识、限制图谱和多重图谱,研究克隆和克隆图谱,讨论DNA序列相关的话题,涉及序列中模式计数的统计问题等。 [1] 图书目录 编辑 播报 《生物数学丛书》序 前言 数学符号 第0章 引言 第1章 分子生物学一些知识 第2章 限制图谱 第3章 多重图谱 第4章 求解DDP的算法 ......
基因组 图谱 导论 生物学 序列

「题解」P9747 「KDOI-06-S」签到题

一个区间合法的充要条件是存在 \(x\) 满足其为区间按位或,并且《\(x\) 左侧所有数或起来》《\(x\) 右侧所有数或起来》二者有其一为 \(x\)。 扫描线扫右端点,不同的按位或将左端点分为 \(\log A\) 个区间,对于每个区间 \([l,r]\) 先在区间按位或 \(v\) 在序列中 ......
题解 P9747 9747 KDOI 06

「题解」Codeforces 1427G One Billion Shades of Grey

感谢 127 的指导/ll \(|h_u-h_v|=\max(0,h_u-h_v)+\max(0,h_v-h_u)\),那么可以把它看成这样的问题: \[\min \{\sum_{(u,v)}\max(0,h_u-h_v+w_{u,v})c_{u,v}\} \]对偶一下,问题就变为:如果两个格子相邻 ......
题解 Codeforces Billion Shades 1427G

CF396C On Changing Tree 题解

CF396C 考虑将贡献表示出来:\(\forall v\in \text{subtree}_u\),\(v\) 会加上 \(x - (dep_v - dep_u)k\),然后发现这个东西可以维护整棵子树,即把 \(x,dep_u\times k\) 和 \(dep_v\times k\) 分开计算 ......
题解 Changing 396C Tree 396

题解 P9993【[Ynoi Easy Round 2024] TEST_133】

就硬把 线段树 3 和 数列分块入门 2 揉到一起出。 维护原数组 \(a\) 及其历史最大值 \(hist\),对每个块,维护块内 \(a\) 升序排序后结果 \(p\)、块内 \(a\) 升序排序后历史最大值前缀和 \(prehist\)、块加标记 \(add\)、块历史和加标记 \(hista ......
题解 P9993 Round 9993 2024

[WC2018] 通道题解

先考虑只有两颗树要咋做,柿子先变成 \(dep_x+dep_y-2\times dep_{lca}+dist_2(x,y)\) 我们可以新建节点 \(x'\rightarrow x\),边权为 \(dep_x\),这样上面的式子可以看作枚举 \(lca\) 后,选出一个端点在不同子树中的直径,可以直 ......
题解 通道 2018 WC

ARC167D Good Permutation 题解

ARC167D 看到排列并且有 \(i\gets a_i\),就可以直接建出图来,显然是若干个不相干的环。 如果不求字典序最小,就可以直接不在同一个环中的 \(i,j\) 直接交换就可以了,因为它要求了最小化操作数。如果求字典序最小,直接从前往后扫一遍,可以用 set 维护不在这个环中且 \(j>i ......
题解 Permutation 167D Good ARC

P5513 [CEOI2013] Board 题解

P5513 容易发现,每次等价于对一个二进制数进行操作。但是这个二进制数长为 \(n\),即需要高精。但是这样支持加一和减一是复杂度会退化为 \(\mathcal{O}(n^2)\),有一个很正常的做法就压位,仿照 bitset 的做法进行操作,复杂度 \(\mathcal{O}(\frac{n ^ ......
题解 P5513 Board 5513 2013

ARC105E Keep Graph Disconnected 题解

ARC105E 正向考虑是很难的,从结果入手,发现最后一定是分别包含 \(1\),\(n\) 的两个完全图。 考虑表示出这两个人一共加了多少边:\(\frac{n(n-1)}{2}-m-x(n-x)\),\(x\) 表示点 \(1\) 所在集合的大小。 由于是判断先手还是后手必胜,所以只需看结果对 ......
题解 Disconnected Graph 105E Keep

P9032 [COCI2022-2023#1] Neboderi 题解

P9032 考试题。 发现 \(g\) 的值是若干个相同的段,且段数很少,因为每次取 \(\gcd\) 至少会将值域变为原来的一半。所以段数是 \(\mathcal{O}(\log V)\) 的。 然后就可以从小到大枚举左端点,然后枚举 \(g\) 的值,找的是最远的满足 \(\gcd(a_l,\d ......
题解 Neboderi P9032 9032 2022

【数据结构】P4338 [ZJOI2018] 历史 题解

P4338 先考虑怎么安排崛起的先后顺序最优。 但是发现好像没有一个很好的顺序去进行崛起,并且由于 \(a_i\) 的值域会很大,所以即使知道顺序应该也会难以进行维护。 转换一下方向,正难则反。考虑每个点的贡献,但是颜色不同时只会算一次,所以要钦定是哪一个点造成的贡献。令当前考虑的点为 \(u\), ......
题解 数据结构 结构 数据 历史

CF1896D Ones and Twos 题解

CF1896D 如果只有单次询问其实可以双指针,但是这个难以进行拓展。 考虑找点性质。 发现 \(a_i,v\in\{1,2\}\),从值域上下手。发现若存在和为 \(S\) 的方案,则一定有和为 \(S-2\) 的方案,因为可以直接 \(-2\) 或 \(-1-1\)。 然后就变为找最大的和为奇/ ......
题解 1896D 1896 Ones Twos

模拟赛简要题解

11.16(C0389) 100+10+50=160,rk3。 本来 BC 都应该写出来的。 A:dp 或 贪心 都可以,贪心直接从下往上覆盖即可。 B: 注意:这里的 \(\oplus\) 指的是按位或。 合法条件可以化简为:\(\oplus_{i=1}^{p}a_i = \oplus_{i = ......
模拟赛 题解 简要

[CTSC2018]暴力写挂题解

我们先将柿子变成 \(\frac{1}{2}(dis_{x,y}+dep_{x}+dep_{y})-dep'_{lca'}\) 考虑边分治,枚举断边,我们将一个点在第二棵树上的点权看成是 \(v_x=d_x+dep_x\),答案就为 \(v_x+v_y+dep'_{lca'}\) 对于每次边分治将分 ......
题解 暴力 CTSC 2018

CF1887D Split 题解

Problem - D - Codeforces Split - 洛谷 我现在水平好烂,再做下去自信心就全败没了 先考虑 \(Q=1\) 怎么做? 两种做法: 暴力枚举分界点,左右判断 暴力枚举 \(\max\limits_{i=l}^{x} a_i\),找到最靠右边的分界点位置 \(x\),判断是 ......
题解 1887D Split 1887 CF

[ABC267F] Exactly K Steps 题解

[ABC267F] Exactly K Steps 题解 思路 首先发现,如果对于查询 \((u, k), k > 0\) 可行,那么对于 \((u, k - 1)\) 也一定可行,因为往回走一步就可以了,所以对于一个点可以找到离它最远的点,根据直径的结论,这个点一定是直径的端点之一。 为了方便做, ......
题解 Exactly Steps 267F ABC

【CF30E】Tricky and Clever Password 题解(manacher + exKMP)

manacher + exKMP + 二分。 感觉是最粗暴的方法,想出来之后自己硬莽了 4k,荣获题解区最长。 Solution 约定:下文所提及到的所有的回文串,均指奇长度回文串。 显然把题目拆成两个部分,中间的回文串,以及两边相同的连续子串。考虑一下从哪个入手比较好。 忘记是咋想的了,易得从两边 ......
题解 Password manacher Tricky Clever

[SNOI2019] 网络 题解

[SNOI2019] 网络 题解 最喜欢这道题。 简要题意 给一颗 \(n\) 个节点的树和一个参数 \(d\),定义两个节点 \(x,y\) 之间的距离为 \(x\) 到 \(y\) 的简单路径上的边数。 定义一个树上连通块的权值为连通块中任意两点的距离之和。定义一个树上连通块的直径为连通块中任意 ......
题解 网络 SNOI 2019

CF1887C Minimum Array 题解

Problem - 1887C - Codeforces Minimum Array - 洛谷 有点被降智了/ll 首先区间修改显然先转化成差分序列单点修改。 显然对于相同的操作序列,\(a_i\) 的取值对答案无影响,因此我们可以先让 \(a_i\) 全部取 \(0\),最后再加回来即可 假如说操 ......
题解 Minimum 1887C Array 1887

洛谷B3647 【模板】Floyd 题解 floyd算法 求 多源多汇最短路

题目链接:https://www.luogu.com.cn/problem/B3647 floyd算法:https://oi-wiki.org/graph/shortest-path/#floyd-算法 示例程序: #include <bits/stdc++.h> using namespace s ......
题解 算法 模板 B3647 Floyd

[题解]CF1811D Umka and a Long Flight

思路 假设原题目中的 \(n\) 在本文中为 \(num\),则原长方形的长 \(m = f_{num + 1}\) 和宽 \(n = f_{num}\)。 显然对于最初始的长方形,显然是要将一个 \(f_{num} \times f_{num}\) 的长方形丢进去的,并且要么放最左边,要么放在最右 ......
题解 Flight 1811D 1811 Umka

CF768G The Winds of Winter题解

我们考虑暴力咋做,每次得到一个森林之后,必定是从最大的树上摘一棵子树,挪到最小的树上,所以此时的答案为 \(max(siz_{mx}-x,siz_{mn}+x,siz_{次大值} )\),于是发现 \(x=\frac{siz_{mx}-siz_{mn}}{2}\) 时答案最优,所以只需找到这个值的前 ......
题解 Winter Winds 768G 768

序列比对方法的纠错效果和准确度比对

## 序列比对方法的纠错效果和准确度比对 在实际应用中,不同的序列比对方法在纠错效果和准确度比对方面具有一定的差异。这些差异主要体现在方法的设计原理和采用的技术上。例如,整体比对方法主要用于找出序列之间的整体相似性,而局部比对方法则可以找到序列之间的局部相似性[1]。然而,需要注意的是,通过局部比对 ......
准确度 序列 效果 方法

在纠错效果上,不同的序列比对方法具有什么不同之处? 在准确度比对中,有没有一种方法在高准确度比对中表现更优秀? 在实际应用中,如何根据需求和数据特点选择合适的比对方法?

在纠错效果上,不同的序列比对方法具有什么不同之处? 在准确度比对中,有没有一种方法在高准确度比对中表现更优秀? 在实际应用中,如何根据需求和数据特点选择合适的比对方法? ......
准确度 方法 中表 序列 实际

错误纠正操作的策略之一是基于第二代短读段的序列与长读段的比对

错误纠正操作的策略之一是基于第二代短读段的序列与长读段的比对。具体操作如下: 1. 压缩处理:在进行比对之前,对第二代短读段和第三代长读段进行压缩处理。压缩处理的目的是将多个相邻的相同碱基压缩成一个,以提高比对效率[7]。 2. 比对操作:将压缩后的第二代短读段与第三代长读段进行比对。比对的目的是找 ......
序列 错误 策略
共4840篇  :10/162页 首页上一页10下一页尾页