定理cap

学习笔记:威尔逊定理

威尔逊定理 定义 威尔逊定理:对于素数 \(p\) 有 \((p-1)!\equiv -1\pmod p\)。 证明 我们知道在模奇素数 \(p\) 意义下,\(1,2,\dots ,p-1\) 都存在逆元且唯一,那么只需要将一个数与其逆元配对发现其乘积均为(同余意义下)\(1\),但前提是这个数的 ......
定理 笔记

学习笔记:费马小定理

费马小定理 定义 若 \(p\) 是质数,且 \(\gcd(a, p) = 1\),则有 \(a^{p - 1} \equiv 1 \pmod{p}\)。 另一个形式:对于任意整数 \(a\),有 \(a^p \equiv a \pmod{p}\)。 证明 设一个质数为 \(p\),我们取一个不为 ......
定理 笔记

什么是CAP理论,为什么不能同时满足?

CAP理论 CAP理论:一个分布式系统最多只能同时满足一致性(Consistency)、可用性(Availability)和分区容错性(Partition tolerance)这三项中的两项。 一致性 每次读取都会收到最新的写入数据 可用性 每个请求都会收到响应,但不能保证数据是最新的 分区容忍性 ......
同时 理论 CAP

从CAP理论到Raft算法

什么是分布式系统 分布式系统是支持分布式处理的软件系统,是由通信网络互联的多处理机体系结构上执行任务的系统。 一个业务拆分为多个子业务,落地成不同的服务,将各个服务部署在不同的容器上。各个服务之间通过某种协议通信交互。 好处是有更好的可靠性,可扩展性,但也带来了一致性问题。所以碰到分布式系统,主要就 ......
算法 理论 Raft CAP

欧拉函数 & 欧拉定理

欧拉函数 互质:对于 \(\forall a, b \in \mathbb{N}\), 若 \(a, b\) 的最大公因数为 \(1\) , 则称 \(a, b\) 互质。 欧拉函数:即 $ \varphi (N)$, 表示从 \(1\) 到 \(N\) 中与 \(N\) 互质的数的个数。 在算术基 ......
定理 函数 amp

学习笔记:欧拉函数与欧拉定理

欧拉函数与欧拉定理 欧拉函数 定义 欧拉函数,即 \(\varphi(n)\),表示的是小于等于 \(n\) 和 \(n\) 互质的数的个数。 比如说 \(\varphi(1) = 1\)。 当 n 是质数的时候,显然有 \(\varphi(n) = n - 1\)。 性质 欧拉函数是积性函数。 积 ......
定理 函数 笔记

Hall定理(霍尔定理)证明及推广

引言 网络上有许多Hall定理的证明,但是对于Hall定理的几个推广的介绍却少之又少,因此本文来简单介绍一下 注:为了使这篇文章看起来简单易懂,本文将不会使用图论语言,会图论的朋友们可以自行翻译为图论语言。 背景: 在遥远的地方有一个神奇国家,这个国家有n个男生和m个女生(n m)。每个男生都喜欢着 ......
定理 Hall

韦达定理的简洁证明

引言 什么是韦达定理?它描述了二次方程的两根关系: \[\cases{x_1x_2=\cfrac{c}{a}\\x_1+x_2=-\cfrac{b}{a}} \]本文将简洁证明韦达定理。 证明 求根公式 我们知道求根公式: \[x=\cfrac{-b\pm\sqrt{b^2-4ac}}{2a} \] ......
定理

Kummer 定理

\(n!\) 中含素数 \(p\) 的幂次为 \(\displaystyle\sum_{i=1}\lfloor\frac{n}{p^{i}}\rfloor\) Kummer 定理:\({n+m\choose n}\) 中含素数 \(p\) 的幂次等于 \(p\) 进制下 \(n+m\) 的进位次数 ......
定理 Kummer

[机器学习] 4. 没有免费午餐定理 No Free Lunch 与 PAC 可学习性

我们来补习一下统计学习框架的正式模型。 输入 一个学习者可以访问以下内容 作用域集合 (Domain set):一个任意的集合 \(\mathcal X\),学习者的目标是对其上面的元素进行标记。 标签集合 (Label set):所有可能的标签 \(\mathcal Y\)。许多时候被限制为 \( ......
学习性 定理 机器 Lunch Free

解任意三角 —— 余弦定理、正弦定理

锐角内的直角三角形的勾股定理只能求解90°直角三角形的问题,但是现实的需求不光只是90°内的三角,下文介绍用正弦、余弦定理帮助解任意角的问题。 正弦定理 适用场景 在以下的情形,我们可以用余弦定理: 已知三角形的两边和两边中间的夹角,求第三边; 已知三角形的三边,求其角度(如以下的例子)。 定理公式 ......
定理 余弦 正弦

【二进制拆分】【bitset】【主定理】

CF1856E2 差点场切啊。 默认已会 E1。 考虑对 E1 进行优化,发现瓶颈在于背包。 设当前子树以 \(u\) 为根,容易发现 \(\sum siz_{v_i}=siz_u-1\),显然要从这里下手。发现总值域较小是与普通背包不同的地方,要么个数少,要么值域小。不妨设背包的总容量为 \(W\ ......
二进制 定理 bitset

ECS-Centos7登录页面出现Hint: caps lock on,输入大小写字母反了(大小写反转问题)

问题描述:虚拟机Centos7,输入大小写字母反了,开启capslock的时候变成小写字母了,关闭则变成大写了。。。 解决办法:只需要执行:setleds +caps 或 setleds -caps 即可。 如图: ......
大小 ECS-Centos 字母 页面 Centos

今日学习:位运算&中国剩余定理

-2^ 31的补码是-0.也就是 1000 0000 0000 0000 0000 0000 0000 0000 补码是原码取反加1 x&(-x) 是最低位为1的位为1,其余位为0. 中国剩余定理: m1,m2,.....,mn相互互质。 x=a1(modm1) x=a2(modm2) ... x= ......
定理 amp

LaSalle不变集定理

关于LaSalle不变集定理的一个问题,原文地址:https://zhuanlan.zhihu.com/p/84639564 总体来说,lasalle不变集定理是为了解决在利用利亚普诺夫稳定性一种特例:构建的利亚普诺夫函数导数非负定,或者是半负定时,运动轨迹就会出现极限环的情况,此时是无法严格判定系 ......
定理 LaSalle

裴蜀定理(详解)

裴蜀定理 先说一下什么是裴蜀定理吧 在数论中,裴蜀定理是一个关于最大公约数(或最大公约式)的定理,裴蜀定理得名于法国数学家艾蒂安·裴蜀。 ——引自百度百科 定理的具体内容: 若 a , b a,ba,b 是整数,且 gcd ⁡ ( a , b ) = d \gcd(a,b)=dgcd(a,b)=d, ......
定理

行列式与矩阵树定理

定义 定义矩阵的行列式: \[\det A=\sum_{\sigma}(-1)^{\tau(\sigma)}\prod_{i=1}^nA_{i\sigma_i} \]\(\tau(\sigma)\) 是原排列的逆序对数。 性质: 若矩阵的某一行或某一列全为 \(0\),则行列式为 \(0\)。 \( ......
行列式 定理 矩阵 行列

哥德尔不完备定理证明

0. 哥德尔不完备定理 每个数学系统都存在一些语句永远无法被证明. 1. 哥德尔数 \(\hspace{0.1cm}\)符号\(\hspace{0.1cm}\) \(\hspace{0.1cm}\)哥德尔数\(\hspace{0.1cm}\) \(\hspace{0.1cm}\)含义\(\hspac ......
定理

「学习笔记」二项式定理

更熟悉的阅读体验? 这是我之前写在 luogu 博客上的,只是现在才搬过来而已。QWQ 二项式系数 就是像 \(\dbinom{n}{m}\) 这样的东西。 对于非负整数 \(n,k\),规定 \(\dbinom{n}{0}=1\) 及 \(\dbinom{n}{n}=1\),\(k>n\) 则 \ ......
二项式定理 二项式 定理 笔记

数列极限与函数极限、海涅定理

海涅定理描述的是函数极限与数列极限之间的关系。它的描述如下: 可以简单地理解为这样的式子: 数列的逼近与函数的逼近不同:函数可以连续地逼近一个点的两侧,而数列只能离散地逼近。 使用海涅定理求数列极限的例题: 先根据数列的样式改写出函数,再求函数的极限,函数极限得到后,根据海涅定理得到数列的极限(一般 ......
极限 数列 定理 函数

导数极限定理

分段点的导数是否可以用两侧导函数的极限来求? 在以前有一个问题一直困扰着我,对于分段函数的导函数是否可以用两侧导函数的极限去求,我曾长期认为我这种想法没有问题,并且对于高中时期的题目我也一直这么干,也没错过,但我从未求证过,直到看到了导数极限定理才解开了我的疑惑。 以下先给出两侧导数的定义 \(f( ......
导数 定理 极限

容斥定理

01容斥定理 容斥定理(简单情况)对任意两个有限集合 A 和 B ,有 =+- 其中,分别表示 A ,B 的元素个数. 推广结论:对于任意三个有限集合 A , B , C ,有 = ++ + 有限集合的计数方法1: 利用容斥定理的上述两个公式计算有限集合的元素个数. 有限集合的计数方法2: 文氏图法 ......
定理

CAP项目集成带身份和证书验证的MongoDB

最近,在使用CAP事件总线时,碰到了这样一个需求:微服务采用的是MongoDB,而且还是带身份验证 和 SSL根证书验证的。由于目前网上能找到的资料,都是不带身份验证的MongoDB,现在网络信息安全越来越被重视,那么就需要自己研究一番了。 ......
证书 身份 MongoDB 项目 CAP

素数分布的基本定理(一)

切比雪夫函数$\psi(x)$和$\vartheta(x)$ / Chapter2 $\vartheta(x)$与$\pi(x)$的关系 / 素数定理的等价形式 ......
素数 定理

Lucas定理及其扩展

Lucas定理 定义 对于质数 \(p\),有:$$\dbinom{n}{m} \mod p=\dbinom{n \mod p}{m \mod p} \dbinom{\lfloor \frac{n}{p} \rfloor}{\lfloor \frac{m}{p} \rfloor} \mod p$$ ......
定理 Lucas

数论——欧拉函数、欧拉定理、费马小定理 学习笔记

数论——欧拉函数、欧拉定理、费马小定理 欧拉函数 定义 欧拉函数(Euler's totient function),记为 \(\varphi(n)\),表示 \(1 \sim n\) 中与 \(n\) 互质的数的个数。 也可以表示为:\(\varphi(n) = \sum\limits_{i = ......
定理 数论 函数 笔记

数论——欧拉函数、欧拉定理 学习笔记

数论——欧拉函数、欧拉定理 欧拉函数 定义 欧拉函数(Euler's totient function),记为 \(\varphi(n)\),表示 \(1 \sim n\) 中与 \(n\) 互质的数的个数。 也可以表示为:\(\varphi(n) = \sum\limits_{i = 1}^n [ ......
数论 定理 函数 笔记

主定理(时间复杂度计算方式)

Master Theorem 用途 一种用于计算递归时间复杂度的定理。 比如对于一个时间复杂度递推式:\(T(n)=T(n/2)+O(n)\), 可以浅显地看出它的复杂度为\(O(nlog_2n)\),因为我们这样子的递归写了太多次了。 但我们可以看到\(T(n)=4T(n/2)+n\), 它的复杂 ......
复杂度 定理 方式 时间

§1. 关于实数集完备性的基本定理

掌握闭区间套定理、聚点定理和有限覆盖定理的内容及证明。会运用这些定理证明相关题目,如 例1、例2。注意定理成立的条件。 重点习题:第1、3、5、7。 博雷尔(Borel)(1871年1月7日 -1956年2月3日),是法国数学家。他的一生成就甚丰,对数学分析、函数论、数论、代数、几何、数学物理、概率 ......
实数 定理 167