component-level representation inter-class generation

mybatis-generator:generate生成器将另外的数据库内同名表生成

问题: 在使用mybatis-generator:generate生成器时,会生成别的数据库内同表名; 因为是相同表名。 解决: 在生成器的配置文件中的数据库连接地址内添加: <!--放置生成其他库同名表--> <property name="nullCatalogMeansCurrent" val ......

[论文阅读] Self-conditioned Image Generation via Generating Representations

Pre title: Self-conditioned Image Generation via Generating Representations accepted: arXiv 2023 paper: https://arxiv.org/abs/2312.03701 code: https:/ ......

开课吧前端1期.阶段5:generator,模块化与babel

复习:ES6 变量let、箭头function、参数等、map、reduce、filter、forEach Promise消除回调,Promise.all([p1,p2,p3]).then() 单独Promise并不能帮我们解决所有问题,还有2个兄弟是从Promise过度出来的,generator ......
前端 generator 模块 阶段 babel

《A Novel Table-to-Graph Generation Approach for Document-Level Joint Entity and Relation Extraction》阅读笔记

代码 原文地址 文档级关系抽取(DocRE)的目的是从文档中提取实体之间的关系,这对于知识图谱构建等应用非常重要。然而,现有的方法通常需要预先识别出文档中的实体及其提及,这与实际应用场景不一致。为了解决这个问题,本文提出了一种新颖的表格到图生成模型(TAG),它能够在文档级别上同时抽取实体和关系。T ......

python生成器generator的用法

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。 所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不 ......
生成器 generator python

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

目录概符号说明Cold Brew代码 Zheng W., Huang E. W., Rao N., Katariya S., Wang Z., Subbian K. Cold brew: Distilling graph node representations with incomplete or ......

GPT-1论文《Improving Language Understanding by Generative Pre-Training》解读

背景 GPT-1 采用了两阶段训练的方式: 1. 第一阶段 pre-training,在海量文本上训练,无需label,根据前k-1个词预测第k个单词是什么,第一阶段的训练让模型拥有了很多的先验知识,模型具有非常强的泛化性 2. 第二阶段在特定任务上fine-tuning,让模型能适应不同的任务,提 ......

POLIR-Int-Generative AI in 2024: The 6 most important consumer tech trends for next year

Generative AI in 2024: The 6 most important consumer tech trends for next year Qualcomm executives reveal key trends in AI, consumer technology and mo ......

Generative AI generates tricky choices for managers

Generative AI generates tricky choices for managers Transformational technologies can be very trying THE REMARKABLE capabilities of generative artific ......
Generative generates managers choices tricky

[论文阅读] Learning Component-Level and Inter-Class Glyph Representation for few-shot Font Generation

Pre title: Learning Component-Level and Inter-Class Glyph Representation for few-shot Font Generation accepted: ICME 2023 paper: https://ieeexplore.ie ......

论文阅读-Self-supervised and Interpretable Data Cleaning with Sequence Generative Adversarial Networks

1. GARF 简介 代码地址:https://github.com/PJinfeng/Garf-master 基于 SeqGAN 提出了一种自监督、数据驱动的数据清洗框架——GARF。 GARF 的数据清洗分为两个步骤: 规则生成 (Rule generation with SeqGAN):利用 ......

Ansor:Generating High-Performance Tensor Program for Deep Learning

Ansor:Generating High-Performance Tensor Program for Deep Learning Abstract 高性能的张量程序对于保证深度神经网络的高效执行十分关键,但是在不同硬件平台上获取高性能的张量程序并不容易。近年的研究中,深度学习系统依赖硬件供应商提 ......

generative AI

Welcome to generative AI for everyone. Since the release of ChatGPT, AI specifically, generative AI has caught the attention of many individuals, corp ......
generative AI

Segmentation Transformer: Object-Contextual Representations for Semantic Segmentation;OCRNet

Segmentation Transformer: Object-Contextual Representations for Semantic Segmentation * Authors: [[Yuhui Yuan]], [[Xiaokang Chen]], [[Xilin Chen]], [[ ......

Generative AI: Friend or Foe?

Generative AI: Friend or Foe? Introduction Artificial intelligence (AI) is rapidly changing the world around us, and the writing and publishing indust ......
Generative Friend Foe AI or

【论文阅读笔记】【多模态-Vision-Language Pretraining】 BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

BLIP ICML 2022 (Spotlight) 读论文思考的问题 论文试图解决什么问题?写作背景是什么? 问题: 在视觉-语言预训练(VLP)中,如何更加高效地利用充斥着噪声的海量图文对数据,提升预训练效果? 如何设计模型,使得预训练后的模型在理解(understanding-based)任务 ......

Drug response prediction using graph representation learning and Laplacian feature selection

Drug response prediction using graph representation learning and Laplacian feature selection Minzhu Xie 1 2, Xiaowen Lei 3, Jianchen Zhong 3, Jianxing ......

GMMSeg: Gaussian Mixture based Generative Semantic Segmentation Models

前置知识:【EM算法深度解析 - CSDN App】http://t.csdnimg.cn/r6TXM Motivation 目前的语义分割通常采用判别式分类器,然而这存在三个问题:这种方式仅仅学习了决策边界,而没有对数据分布进行建模;每个类仅学习一个向量,没有考虑到类内差异;OOD数据效果不好。生 ......

DeepWalk Online Learning of Social Representations

目录概符号说明DeepWalk代码 Perozzi B., AI-Rfou R. and Skiena S. DeepWalk: Online learning of social representations. KDD, 2014. 概 经典的 graph embedding 学习方法. 符号说 ......

Class-Incremental Learning with Generative Classifiers(CVPR2021W)

前置知识:VAE(可以参考https://zhuanlan.zhihu.com/p/348498294) Motivation 之前的方法通常使用判别式分类器,对条件分布\(p(y|\textbf{x})\)进行建模(classifier+softmax+ce)。其问题在于分类器会偏向最新学的类别, ......

MemGPT中_generate_reply_for_user_message报错TypeError: cannot unpack non-iterable coroutine object

memgpt/autogen/memgpt_agent.py", line 230, in _generate_reply_for_user_message (TypeError: cannot unpack non-iterable coroutine object 解决 将memgpt/auto ......

《REBEL Relation Extraction By End-to-end Language generation》阅读笔记

论文来源 代码地址 相关视频(YouTube) 相关概念: 1.What is natural language understanding (NLU)? Natural language understanding (NLU) is a branch of artificial intellige ......

【今日收获】Representation Collapse

在深度学习中,对预训练模型进行 fine-tuning 可能会引发一种称为 "Representation Collapse" 的现象。Representation Collapse 指的是模型在 fine-tuning 过程中失去了原始预训练模型所具有的多样性和丰富性的特征表示,导致最终模型的表示 ......
Representation Collapse

BMR论文阅读笔记(Bootstrapping Multi-view Representations for Fake News Detection)

以往的多媒体假新闻检测研究包括一系列复杂的特征提取和融合网络,从新闻中收集有用的信息。然而,跨模态一致性如何影响新闻的保真度以及不同模态的特征如何影响决策仍然是一个悬而未决的问题。本文提出了一种基于自举多视图表示(BMR)的假新闻检测方案。对于一篇多模态新闻,我们分别从文本、图像模式和图像语义的角度... ......

2023ICCV_Feature Modulation Transformer: Cross-Refinement of Global Representation via High-Frequency Prior for Image Super-Resolution

一. Motivation 1. transformer的工作主要集中在设计transformer块以获得全局信息,而忽略了合并高频先验的潜力 2. 关于频率对性能的影响的详细分析有限(Additionally, there is limited detailed analysis of the i ......

Generative-Contrastive Graph Learning for Recommendation论文阅读笔记

Abstract 首先介绍了一下GCL的一些缺点,GCL是通过数据增强来构造对比视图,然后通过最大化对比视图之间的互信息来提供自监督信号。但是目前的数据增强技术都有着一定的缺点 结构增强随机退出节点或边,容易破坏用户项目的内在本质 特征增强对每个节点施加相同的尺度噪声增强,忽略的节点的独特特征 所以 ......

乘风破浪,遇见生成式人工智能(Generative AI)洪流之初学者入门课程,十二章系列By微软云技术布道师团队

课程资源 https://github.com/microsoft/generative-ai-for-beginners 课程学习环境设置 Fork课程仓库到自己的账号 https://github.com/microsoft/generative-ai-for-beginners/fork 点击 ......

Python——第四章:生成器(generator)

生成器(generator): 生成器的本质就是迭代器 创建生成器的两种方案: 1. 生成器函数 2. 生成器表达式 生成器函数 生成器函数中有一个关键字yield 生成器函数执行的时候, 并不会执行函数, 得到的是生成器. yield: 只要函数中出现了yield. 它就是一个生成器函数 作用: ......
生成器 generator Python

ES6 Generator

Generator Generator 函数是一个状态机,封装了多个内部状态。 执行 Generator 函数会返回一个遍历器对象,返回的遍历器对象可以依次遍历 Generator 函数内部的每一个状态。 函数特征:1. function 关键字与函数名之间有一个星号。2. 函数体内部使用 yiel ......
Generator ES6 ES

CA-TCC: 半监督时间序列分类的自监督对比表征学习《Self-supervised Contrastive Representation Learning for Semi-supervised Time-Series Classification》(时间序列、时序表征、时间和上下文对比、对比学习、自监督学习、半监督学习、TS-TCC的扩展版)

现在是2023年11月27日,10:48,今天把这篇论文看了。 论文:Self-supervised Contrastive Representation Learning for Semi-supervised Time-Series Classification GitHub:https://g ......
时间序列 时间 序列 supervised 时序
共238篇  :1/8页 首页上一页1下一页尾页